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We show that classical electrodynamics can be obtained as a limit of a system 
of "geodesic" equations on 2-vector fields in an Artinian manifold. The limit 
method is geometrically analogous to the method used to obtain Newtonian 
mechanics as the limit of the geodesic equations on a Lorentzian manifold. It 
is also shown that the current and energy-momentum conservation law of 
electrodynamics can be obtained directly from the "geodesic" formulation. The 
geometric structures introduced are related to semi-K~ihlerian and balanced 
structures in complex geometry. 

I N T R O D U C T I O N  

It is a we l l -known  and  phys i ca l ly  i m p o r t a n t  fact  tha t  N e w t o n ' s  s econd  
law a p p r o x i m a t e s  the  geodes i c  equa t ions  in the  l imit  of  small  veloci t ies .  I t  
is this fact  tha t  makes  met r ic  geomet ry  a phys ica l ly  v iable  ex tens ion  of  
c lass ical  mechanics .  This ar t ic le  seeks to demons t r a t e  that  there  is a fo rmal ly  
ana logous  cons t ruc t ion  in e lec t rodynamics  whereby Maxwel l i an  electro-  
dynamics  is also real ized as the l imit  of a more  invar ian t  geometr ic  structure.  

W h e n  N e w t o n i a n  mechan ics  is given a geomet r i c  fo rmula t ion ,  it is 
f o u n d  to be  a met r ic  geomet ry  toge ther  with a to ta l ly  geodes ic  c od ime ns ion -  
one fo l i a t ion  d e t e r m i n e d  by  a func t ion  ca l led  the  t ime func t ion  that  defines 
the  un iversa l  t ime o f  each  lea f  of  the fo l ia t ion .  The  g rad ien t  o f  the  t ime 
func t ion  is a Ki l l ing vec tor  field for the  met r ic  geometry .  A l t h o u g h  the 
exis tence  o f  such a func t ion  is a s t rong cond i t i on  on  a metr ic  geomet ry ,  in 
any met r ic  geome t ry  it is poss ib l e  to find a long  a given t r a jec to ry  a func t ion  
tha t  reduces  the  geodes ic  equa t ion  ins t an taneous ly  to N e w t o n ' s  s econd  law. 
To see tha t  an ana logous  r educ t ion  is poss ib le  in e l ec t rodynamics ,  one  mus t  
first iden t i fy  the  aux i l i a ry  s t ructure  c o m p a r a b l e  to the t ime func t ion  o f  
N e w t o n i a n  mechanics .  F r o m  a mechan ica l  po in t  o f  view (Sour iau ,  1970), 
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it is well known that the carrier of  the 2-form that represents the electromag- 
netic field is not the space-time manifold, but is rather the cotangent bundle 
of  the space-time manifold. However,  to distinguish those 2-forms on the 
cotangent bundle that correspond to electromagnetic fields requires an 
auxiliary structure, namely the vertical polarization and the canonical 
symplectic structure. It will be shown that this pair of  structures is the 
analog of the codimension-one foliation and time function of Newtonian 
mechanics. In fact, on an Artinian manifold there is a system of partial 
differential equations that reduces to Maxwell 's  equations in the presence 
of a local symplectic structure with a local polarization. 

The presentation of  these results is organized as follows: The first 
section introduces a class of  dynamical structures that is the basis for both 
the electromagnetic and mechanical models studied in this article. These 
systems can be described as extensions of  the geodesic equations that arise 
from the Carath6odory approach to the calculus of  variations. In the second 
section the reduction of  the geodesic equation in Fermi normal coordinates 
to the Newtonian force law is reexamined using the dynamical formalism 
introduced in Section 1. Although this material is not new, it is included 
because it provides the setting for the reduction of a similar geodesic system 
of equations to Maxwell 's  equations presented in Section 3. In Section 4 
is is shown that this geodesic system possesses analogs of  the current and 
energy-momentum differential conservation laws. 

1. PRELIMINARY RESULTS AND N O T A T I O N S  

Because many  of  the following calculations depend explicitly on the 
choice of  normalization of  the exterior calculus, it may be helpful to recall 
the standard normalization convention. The r-fold exterior power of  a real 
vector space V is defined by At(V) = T r ( V ) / ~ ,  where Tr(V)  is the r-fold 
tensor product of V and d = ker(Alt). Here Alt is the projection on Tr(V) 
defined as the alternating sum of the isomorphisms t~ of Tr(v) induced 
by a permutat ion on r letters o- ~ ~r; that is, for w ~ T~(V), 

A l t (w)=  1 ~ sign(~r)t~(w) (1.1) 
r! ~ 

The elements of  Ar(V) are called r-vectors and the elements of  At(V*) are 
called r-forms. Recall that the dual space Tr(V)* can be identified with 
Tr(V*) using the pairing between A1 | �9 �9 |  c Tr(V*) and vl | �9 �9 | Vr C 
Tr(V)  given by A1|  "|174 "| Ar(Vr). This pairing 
can als0 be viewed as a multilinear map denoted by A ~ | 1 7 4  
A~(Vl . . . .  , Vr) = A~ | " �9 | Ar(V~ | " " @ Vr). Using this representation of the 
dual space of  T~(V), we can also identify the dual space At( V)* with At(V*).  
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Recall that the exterior algebra of V is the algebra defined on A(V) = 
Or=0 At(V) by the wedge product. The wedge product  between Y~ c A ' (V)  
and M c A ' (V)  is given by 

( r + s )  
Z ^ M = - -  Alt(Y.| M)  

r ! s !  

The notion of a multilinear map can be extended to arbitrary exterior powers 
of V; that is, for 2 ~ Ar(V *) and Zj~ AiJ(V) with j ~  (1,..., k) and i I -t- - - -  + 

ik = r define 2(Z1 ..... Zk) = 2(E1 | ..- |  F rom (1.1) it follows that 

r! 
�9 - .  X ( Y 1 , . .  ~ k )  

A'(Z1 ̂  ^ Z k ) - - i l ! . . .  ik ! "' 

Also define the interior product  between Z ~ Ak(V) and )t ~ At(V*) as 
follows. When r-> k define ~(Y~)A ~ Ar-k(V*) by ~(E)3,(M) = •(Z, M)  for 
M c A ~ - k ( V ) ,  and if k >  r, then ~()t)Z6 Ak-r(V) is given by 

(k)  #(t(J,)Z)=J~A /2(Z) for # E A g - r ( v  *) 

A k-vector s and a k-form h determine an endomorphism g ( s  ,~) of  
V. The concomitant cO(y., A) is obtained by contracting the first k - 1 indices 
of  s with the first k -  1 indices of  a. On simple vectors it is given by the 
expression 

(~(~)1 A" " " A Vk,  /~1 A" " " A ak) 
=Y~ (-1)i+JXl ^" " " ̂ ~ , ^ "  " " ̂  Ak(V,^" " " ̂  ~ j ^ '  " " ̂  Vk)Vj| 

i,j 

The concomitant  ~ is an essential object in the following constructions. It 
arises partly because it satisfies the following identity for the interior product.  
Let E c Ak(V) and let A 6 A~(V*) and o- ~ Ak( V*); then 

~(Z)o- ^ h = cr(~))t - kh( q~(Z, or)) (1.2) 

Finally, recall that a k-vector Z or a k-form cr is said to be nondegenerate 
if for any )t c V* of v ~ V, ~()t)Z = 0 implies A = 0 or ~(v)~r = 0 implies v = 0. 
Nondegeneracy is a generic condition Ak(V) or Ak(V*) for k > 2. In the 
case of  2-vectors or 2-forms nondegeneracy is generic if dim(V) is even. 

I f  M is a smooth manifold, then the previous considerations apply to 
the tensor products of  the tangent bundle of  M. Denote the bundle of 
k-vectors over M by Ak(M) and the bundle of  k-forms over M by Ak(M).  
The space of sections of  Ak(M) or the space of k-vector fields on M is 
denoted by ~k(M),  with the exception that the space of vector fields will 
be denoted by ~ ( M ) .  The space of sections of  Ak(M) or the space of 
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differential k-forms is denoted by c~k(M). This article studies a class of 
dynamical structures on 2-vector fields. These structures were introduced 
for k-vector fields in Martin (1988). To make this article somewhat self- 
contained, I will recall the definitions of Martin (1988) and briefly describe 
the results needed for the present discussion. 

Dynamical structures on k-vector fields naturally arise in the 
Carath6odory approach to the first-order variational calculus. In this con- 
struction the variational problem is formulated in terms of an immersion 
f :  N ~  M, where M and N are m-dimensional and n-dimensional smooth 
manifolds and N is compact with boundary. The differential of  an immersion 
f is encoded in the image by f of  fixed n-vector field F on N. Since f , F  is 
a section of  An(M) along N, the Lagrangian function L is then a degree-one 
homogeneous function on A , (M) .  If  ~r is the unique n-form on N such 
that o-(F) = 1, then the action integral determined by L has the form 

d ( f )  = [ L(f,F)o- 
J N 

The best illustration of  a variational problem that is naturally formulated 
from Carath6odory's point of  view is the minimal surface problem. In this 
case L is the function on An(M ) determined by the length function on the 
fiber of An(M) induced by the metric on M. 

Just as in mechanics, the Euler-Lagrange equations for f can be given 
an invariant formulation in terms of the natural geometry of  An(M). On 
An(M) there is a canonical nondegenerate differential ( n + l ) - f o r m  3' 
defined by the relation 3' = da, where a is the tautological form on An (M).  
Recall that the value of  the tautological n-form a at p c A , ( M )  on 
v l ,  . . . , vn ~ T ( A n ( M ) ) p  is a p ( v l ,  . . . , vn)  = p ( z r . v l , . . . ,  zr, v,). 

Next, with the Lagrangian function L associate the Legendre map 
l: A n ( M ) ~ A n ( M ) .  To define l, let d~ denote the vertical derivative on 
functions along the fibers An(M) and let, for u c A , ( M ) ,  i-1: A n ( M ) r ~  
T(An (M)v)u be the natural identification. In terms of these operations l ( u )  

evaluated on w c An ( M ) p  is given by l ( u ) ( w )  = d v L ~ ( i  l w ) .  As in mechanics, 
there exists an n-vector field E on A"(M)  satisfying the conditions that 
I(r = h for h ~ / (An(M))  and dL(E)T =0.  The n-vector field Y~ is called 
the Hamiltonian n-vector field for the Lagrangian L. However, unlike the 
Hamiltonian vector field in mechanics, E is not uniquely determined when 
n > l .  

This investigation studies the geometric structures that arise when the 
dynamical equations of  the Carath~odory formulation are evaluated on 
nonsimple 2-vector fields, that is, sections of A2(M) that are not associated 
with plane fields on M. To introduce these equations, an n-vector field 
on An(M) is said to be regular if 7r.Y. is invertible. 
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Definition 1.1. An n-vector field F ~ g,(M) is said to satisfy the dynami- 
cal equations determined by a regular s e g,(A"(M)) with Legendre map 
l =  ( z , Z ) - 1  if 

L ( / (F) ,F  - X t(r)) 7 = 0 (1.3) 

If ~ is the Hamiltonian n-vector field associated with a Lagrangian, then 
(1.3) evaluated on simple n-vector fields is the first-order or geodesic form 
of the Euler-Lagrange equations. For example, if the Lagrangian function 
is the squared length function of A,,(M), then (1.3) implies the vanishing 
of the mean curvature tensor. 

Fortunately, if E is a homogeneous n-vector field on A n (M),  then (1.3) 
can be formulated as a system of equation on M. Let X~ ~ ~ (An(M))  be 
the vector field that satisfies ~(X~)y = a. The vector field X ,  is a vertical 
vector field that serves as a homogeneity operator on functions along the 
fibers of A~(M). 

Lemma 1.1. Let E~ ~n(An(M)) be regular and satisfy the relation 
L x E =  cE and d~(Z)7 =0.  An n-vector field F on M satisfies (1.3) if and 
only if 

( - 1 )  n 
L ( r ) d / ( r )  - 1 - - ~ c  d ( t ( r ) ( r ) )  = 0 (1.4) 

Proof See Martin (1988). I 

Observe that the system (1.4) is completely determined by the Legendre 
map /. In most geometric applications of (1.4), l: An(M)-~A~(M) is the 
identification map induced by a metric on M; that is, if g is a metric on 
M, then g determines a map h T M ~  T*M given by l(u)(v) = g(u, v), and 
l in turn induces a map denoted by the same symbol, h A~(M)-~ An(M). 
In the following all Legendre maps will be metric identification maps. Note 
that metric identification maps are homogeneous of degree one, and so 
c = 1. If  l is induced by a metric and n = 1, then (1.4) is the defining system 
for geodesic vector fields on M. For other values of n, if F is an integrable 
simple vector field, then (1.4) gives the minimal surface equation for the 
leaves of F. However, (1.4) can equally well be applied to n-vector fields 
of any type. This article will study the system of equations generated when 
(1.4) is evaluated on nondegenerate 2-vector fields. It will be seen that this 
system is closely related to the dynamical equations of electrodynamics. In 
fact, if M is an Artinian manifold, (1.4) gives an extension of Maxwell's 
equations that is formally identical to the extension of Newtonian mechanics 
by relativistic mechanics. 

9o2/32/6-8 
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2. THE MECHANICAL CASE 

This section considers the relation between Newtonian mechanics and 
the mechanical structure of  metric geometry from the point of  view of 
equation (1.4). Although this relationship is elementary and well understood 
(Trautman, 1966), a reexamination of the questions involved is required to 
establish the connection between (1.4) and Maxwell's equations. 

Recall that Newtonian mechanics can be formulated in terms of  time- 
dependent vector fields on a Riemannian manifold S. A time-dependent 
vector field V: S • R ~ TS can be viewed as a vector field on S • R by setting 
V=(V,  1). If  T = ( 0 ,  1), then the total time derivative of  V is given by 
V =  LTV+VvV,  where V is the Levi-Civita connection on S. Given a real 
constant m and fixed time-dependent vector field F, a t ime-dependent vector 
field V satisfies Newton's second law with mass m and force F if talk-- F. 
Under special conditions it is possible to obtain Newton's second law as 
the geodesic equation of  a metric geometry (M, g). 

Proposition 2.1. Let T be a gradient Killing vector field on M with 
nonvanishing length. If V is a vector field on M such that V= T +  v and 
g(T, v ) = 0 ,  then VvV= LTV+ Vvv ~O. 

Proof If T =  Vt, then the constant-t hypersurfaces are totally geodesic. 
Consequently, since [] Tll is constant, any vector field v that is orthogonal 
to Tsatisfies V~T=0.  Hence, V r + ~ T + v =  IT, v] +Vov. | 

Therefore a curve V(s) in M with dt(~(s))= 1 is geodesic if and only 
if it satisfies Newton's second law. If M does not possess such a splitting, 
then Newton's second law and the geodesic equations determine different 
motions relative to any nondegenerate function. However, for any metric 
geometry and any constant-length vector field V, there is a locally defined 
nondegenerate function t such that relative to the splitting determined by t 
the total time derivative and the total covariant derivative agree at a point. To 
derive this fact, introduce the following general constructions on vector bundles. 

Let ~ : E ~ N  be a vector bundle over N, and let F(E)  be the space 
of smooth sections of E. Suppose that E possesses a linear connection V; 
that is, V is a map V: Y'(N) • F((E)  ~ F(E)  that over smooth functions on 
N is linear in the first entry and a derivation in the second entry. One can 
associate with V the vertical map V: TE ~ VE, where VE -~ E is the vertical 
subbundle of TE that is defined by the identity z~. VE= O. If X~ Y'(N) 
and s c F ( E ) ,  then V is related to V by the identity i l / s ( s .X )= Vxs .  Here 
i: VE ~ E is the natural map that identifies a tangent to the fiber with a 
vector in the fiber. The vertical map iV and bundle map ~" determine a 
bundle isomorphism j:  TE ~ E Q TN  given by j = iV•  or.. A tensor field 
T on E will be said to be a lifted tensor field for the connection V if for 
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any pair v~, v2~ E in the same fiber, j ( T ( v t ) ) = j ( T ( v 2 ) ) .  To each section 
of s of E therecorresponds a lifted vertical vector field ~ satisfying i~(v) = 
s ( ~ ( v ) )  and to each vector field X on N there is a lifted horizontal field 
X" satisfying V)~ = 0. It is not hard to see that if X c ~ ( N )  and s ~ F(E),  
then the covariant derivative is also given by Vxs = i[.~, w (Dombrowski, 
1962). 

The vector bundles considered in this discussion are the normal bundles 
of submanifolds N ~ M. If  (M, g) is a metric geometry and g is nondegener~ 
ate on N, then the normal bundle of N may be identified with T N  1, the 
orthogonal complement of the tangent bundle to N. If  U is a vector field 
defined along N, Iet U II and U -~ denote the components of  U in T N  and 
T N  j-, Recall that the Levi-Civita connection V on M defines a connection 
V • in T N -  given by V~: V--- (VxV) • for X ~ ~ ( N )  and V ~ F(TNa).  Recall 
also that the shape tensor h is given by h(X, V) = (VxV) II. Let eXpN: T N  • 
M be the exponential map of the metric geometry. If  X is a vector field 
on T N  a, then X x = expN*X is a vector field defined in a neighborhood of 
N. Also, if V is a connection in T N  ~, let S: T N •  TNJ-~  T N  -c be the 
difference tensor V -  V • 

Lemma 2.1. I f V c F ( T N  • and X c g ~ ( N )  and if P(, Vc  ~~ are the 
corresponding lifted vector fields for V, then 

Vp~2~IN=h(X,  V ) - S ( X ,  V) 

Proof Since V is symmetric, 

[9~,2~]=expN.[P, 2], and so [9~,2~]1~=[9,2]=-~V But 
However, 

and so 

V~x2x=V~V-~xV=h((X, V)-S(X, V) | 

Using this structure, it is now possible to derive the reduction of the 
geodesic equations to Newton's second law in the Fermi coordinates 
surrounding a geodesic. A similar but more intricate argument will be used 
to prove an analogous result in electrodynamics. 

Theorem 2.1. Let V be a vector field on M with constant length. For 
each x c M there is a neighborhood U of x and functions t and c on U such 
that V=  cV t + v with g(V t, v)=O, V(x)  = Vt(x), and V vVI,  = Lv,vl. ~ = DIx. 

Proof First observe that if S c M is a nondegenerate curve, that is, g 
is nondegenerate on TS, and if p: S-+ ~ is the arc length parametrization, 



992 Martin 

then the function r: T S X ~  defined by r(v)=p(~'(v)) is a lifted function 
and dr is a lifted 1-form. Let t = expsa*r. Lemma 2.1 implies that if U c 
F(TS L) and if X is a lifted field on TS • then 

Vc;xdt(XX)]s= -d t (h(~ ,X,  U)) 

Now suppose that V is a vector field on M with constant length and that 
S is an integral curve of V. Upon  writing V = cV t + v for a function c chosen 
so that VIs =Vtls and g(Vt, v ) = 0 ,  one finds, using (1.4), 

I(V vV)l s = ~( V) dl( V) +�89 V)( V)ls = (dc)• + L(Vt) at( V)[s = ( dc)• 

H e r e  (dc )  • deno te s  the  res t r ic t ion  of  dc  to  T S  • Since II VII 2 = c 2 IlVt II 2 + II v II 2, 
dels= -�89 and so for a lifted vertical field U, 

dc(  UX)l  s = - 1 U  x IlVt II 2Is = dt(h(Vt, iU)) 

Consequently, if S is a geodesic, then dt(h(Vt, i U ) ) =  0. Suppose that V' 
is a geodesic field such that II v'[I 2=  II Ell 2 and V'(x)= V(x). I f  t' is the 
function determined by the geodesic S'  through x, then V and V' can be 
decomposed by Vt'  as V = c V t ' + v  and V'=c'Vt '+v' .  Now note that 
(dc')ilx = - ldllVt' ll2• = (de)• = 0, and so the same calculation as above 
now gives 

l(VvV)lx -- t(Vt') dl(v)lx + (dc)llx = Lv,,l(v)lx = l(Zvcv)[x I 

3. THE E L E C T R O M A G N E T I C  CASE 

This section develops the connection between (1.4) evaluated no non- 
degenerate 2-vector fields and Maxwell• electrodynamics. The relevant 
Legendre map  l: Az(M) ~ A2(M) is induced by an Artinian metric g on M. 
Recall that an Artinian manifold is a 2n-dimensional manifold together 
with a metric of  signature (n, n). A nondegenerate quadratic form is said 
to be of  signature (p, q) if the form is positive on p basis elements and 
negative on q basis elements of  an orthogonal basis. To demonstrate a 
general connection between (1.4) and Maxwell 's  equations, first consider 
the special case where (1.4) is precisely Maxwell 's  equations. 

Example 3.1. Let (N, q) be a parallelizable Lorentzian manifold and 
let ~ be a closed differential 2-form on  N representing the electromagnetic 
field tensor. Let 3' be the canonical symplectic form on T*N. Recall that 
q~ determines a translated symplectic form o n  T*N given by oJ = 3,+ ~-*~. 
I f  j :  T ( T * N ) ~  T*(T*N) is the identification map induced by y, then 
A = j - l w  is a nondegenerate 2-vector field on T*N. Two-vector fields of  
this type will be called electromagnetic 2-vector fields. Now let (el,  .. �9 e,) 
be an orthonormal parallel frame field on N, and let ( e * , . . . ,  e*) be the 
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corresponding dual frame field; that is, e*(ei) = 6ji. If ( e l , . . . ,  e,) is lifted 
horizontally to ( e l , . . . ,  e,) and if (e* . . . .  , e*)  is lifted vertically to 
(f~, . . .  , f , )  one obtains a frame field ( e l , . . . ,  e, , f~ , . . .  , f , )  on T*N. This 
frame field is a Darboux frame field for 3', and so 3' = ~ i f *  A e*. If  ~ = 
q~(e~, ej), then w =~]i f*  ^ e*+Y~<j r ^ e*, and since j(ei) = - f *  and 
j ( f )  = e*, then A = ~ f  ^ e~ + ~ < j  Pof Afj. Now suppose that an Artinian 
metric g is defined on T*N by setting g(ei, ej) = q(~,ei, ~r, ej), g ( f , f j )  = 
-q(e*,  e*), and g ( f ,  ej) = 0. If h T(T*N)--) T*(T*N) is the identification 
induced by g, then I (A)=  -Y'.ifi* A e* +~g<j~i%jejfi* Afj*, where eg= 
q(e~, eft. Substituting these expressions into (1.4) gives 

~(A) a t ( A ) - � 8 9  5~ e~V~,jejf* = 4 2 (div q~)J* 
i,j j 

This example shows that, as in mechanics, an extra condition must be placed 
on (1.4) in order for (1.4) to reduce to a linear model. The extra condition 
in this case is the flatness of the underlying space-time. 

In the light of this calculation the question arises, is there a general 
relation between (1.4) evaluated on nondegenerate 2-vector fields and Max- 
wellian electrodynamics ? The first step toward realizing this correspondence 
is to interpret (1.4) as the reduction of a second-order system. This is possible 
when (1.4) is evaluated on simple vector fields, since simple vector fields 
can be expressed in terms of derivatives of immersions. To find the correct 
notion of a potential for a nondegenerate 2-vector field, one appeals to 
electrodynamics, where one finds that the vector potential corresponds to 
a Lagrangian submanifold. 

Given a nondegenerate 2-vector field A on a manifold M, a submanifold 
N'--) M is called a Lagrangian submanifold if the normal bundle to N, 
a n n ( T N ) c  T*MIN , is a Lagrangian subbundle for A. On the cotangent 
bund l e  the vector potentials of an electromagnetic field are Lagrangian 
submanifolds of the 2-vector field introduced in Example 3.1. 

Example 3.1 (continued). If A is a 1-form on N satisfying dA = rp, then 
the complement of TA(N) relative to 7, (TA(N)) •  T(T*N)IA(N), is a 
Lagrangian subbundle of w = y +  ~-*q~. However, if X c ann(TA(N)), then 
j-~(A)e TA(N) ~, and so if A = j - l ( w ) ,  then A(N)  is Lagrangian for A. 
Note that an electromagnetic 2-vector field is uniquely determined by any 
vector potential. 

In general if the metric on T*N is not flat, then (1.4) evaluated on 
electromagnetic 2-vector fields leads to an inconsistent system (Martin, 
1988). However, if (1.4) is evaluated on a larger class of 2-vector fields on 
T 'N ,  then the vector potential no longer uniquely determines a correspond- 
ing 2-vector field, and so the interpretation of (1.4) as a second-order system 
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is lost. This situation is comparable  to the situation in relativistic mechanics 
where a parametrized curve no longer determines a unique velocity. 
However, (1.4), in its manifestation as the geodesic equations, determines 
a parametrization of solutions up to a scale, since the tangent to a solution 
must have constant length. A similar but not so obvious construction can 
be made when (1.4) is evaluated on nondegenerate 2-vector fields. In this 
case, the analog of the constant-length condition in mechanics appears  to 
be the following condition. 

Definition 3.1. A nondegenerate 2-vector field A is said to have charge 
a e ~ if ~ ( h ,  I(A)) = aid. 

Example 3.2. There are many examples of  2-vector fields on an Artinian 
manifold satisfying Definition 3.1. I f  T * N  is the cotangent bundle of  a 
metric geometry ( N , q )  and if j :  T(T*N)--> T * N O T N  is the bundle 
isomorphism induced by the Levi-Civita connection on N, then g = 
j * ( - q |  is an Artinian metric on T*N. It is not hard to see that if y is 
the canonical 2-form, then ~ ( l - l ( y ) ,  y ) = _ i d .  Other examples can be 
constructed from almost-Hermitian manifolds. For this construction see 
Example 3.3. 

To develop the consequences of  Definition 3.1, first note that a non- 
degenerate 2-vector field on a manifold M with metric g defines an 
isomorphism h: T*M--> T M  given by h (~) = ~ (A)A. Together I and h define 
an automorphism field E on T M  given b y E  = hi. This automorphism field 
has the following properties. 

Lemma 3.1. If A is a charge-~, 2-vector field, then (1) E is skew- 
symmetric relative to g, (2) E 2 =  - a i d ,  and (3) a pair of complementary 
distributions (X, Y) on M satisfying E X  = Y are orthogonal if and only if 
X is Lagrangian for I(A). 

Proof Part 1 follows from the skew symmetry of A. To see part  2, let 
p ~ M ,  and let A~ T*Mp and v c  TMp; then 

A rg(A,/(A))v = A( / ,  l (e(l(v))A))  = -A(lhlv,  ,~) = -A((hl)Zv) 

Therefore, (h/) 2 = -~id .  Finally, to see part  3 note that if 35 is Lagrangian 
for / (A) ,  then since g(Ex, z ) = / ( A ) ( x ,  z), then x e 35p implies Ex e Xr  Also, 
if Ex e X~p, then x e Xp. Consequently, Y = 35• I 

Note that if X is a Lagrangian distribution for A, then clearly X 1 is 
Lagrangian for I(A), and so, as a consequence of part 3, E X  • = X is also 
Lagrangian for I(A); that is, A and I(A) have the same Lagrangian distribu- 
tions. Also note that parts 1 and 2 imply that the metric must satisfy 
]]Exll2=al]xll 2. Consequently, Definition 3.1 places a restriction on the 
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possible signatures of g. If e>  0, then g is Riemannian and E defines an 
almost-Hermitian geometry. If  e < 0, then g is Artinian and E determines 
an almost product structure on M. Because only the Artinian geometry 
admits Lorentzian submanifolds, it shall be assumed that e < 0. In fact, it 
is convenient to assume that e = - 1 .  The cases where e # - 1  can easily be 
obtained by rescaling A. 

With these definitions it is now possible to conjecture that if (1.4) is 
evaluated on nondegenerate 2-vector fields, then an analogous result to 
Theorem 2.1 holds true. First, as indicated, the unit-length condition of 
Theorem 2.1 should be replaced by Definition 3.1. Next, since the potentials 
for a constant-charge 2-vector field have been identified with Lagrangian 
submanifolds, the natural generalization of Theorem 2.1 would be to show 
that along appropriately chosen Lagrangian submanifolds, (1.4) reduces at 
least infinitesimally to Example 3.1. To carry out this program, I will begin 
by studying the behavior of  a charge-(-  1), 2-vector field in the neighborhood 
of a Lagrangian submanifold. 

Recall that if V is a real vector space and if V* is the dual space, then 
V| V* possesses a natural nondegenerate 2-form 7o given by yo((V, h), 
(u, t z ) ) = A ( u ) - l x ( v )  for (v,h) ,  (u,p~)c V |  If w is a nondegenerate 
2-form on a real vector space W and if X, y c W are complementary 
Lagrangian subspaces, then o induces an isomorphism io: Y ~  X* given 
by io(u)= ~(u)co for u~ X. It is not hard to see that i d •  io: W ~  X O  X* is 
a symplectic isomorphism. 

Now let A be a charge-(-1)  2-vector field and let N ~  M be a 
Lagrangian submanifold for A on which g is nondegenerate. As noted 
above, (TN, TN • defines a pair of complementary distributions for I(A) 
along N. The map i: T N •  *= T * N  defined by i (v )=~(v) l (A)  for 
v E TN l is a bundle isomorphism between TN l and T*N. If 0*  denotes 
the zero section of T ' N ,  then 

T(T*N)Io~ = T N G  ( TN)* 

and if 7 is the canonical 2-form on T ' N ,  then 

7to~, = 7o 

If 0N denotes the zero section of  TN • then T(TN• = T N O  TN • and 
i.[oN = id |  i0, and so 

I(A)IoN = i*'/10~ 

Next observe that if j :  T(T*N)  ~ T N O  T*N is the isomorphism induced 
by the Levi-Civita connection VII on N, then 7 is a lifted 2-form. To see this, 
first note that if p ~ T ' N ,  then for v ~ V( TN)p and w ~ T( T*N)p,  7(v, w)=  
i(v)(~r.w). Therefore, if for (Zo, z~)~ T N G T * N ,  j-l(Zo, z~) is written as 
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j - l (Zo,  zl) = z H + i- lz l ,  where z H is the horizontal vector satisfying ~-,z H = 
Zo, then since the horizontal distribution is Lagrangian, 

]/(j-I(z0, za) , j - ' ( yo ,  y ,))  = z,(yo) - zo(Yl) 

Consequently, y is lifted relative to the Levi-Civita connection. Now the 
bundle isomorphism i: T N  ~ -+ T* N induces a metric connection V = i-~Vll i 
on T N  1, and so relative to the connection V, i*y is a closed lifted 2-form 
on T N  ~. I f  

too = exp Nt*i* y 

then Wo is a closed nondegenerate 2-form defined in a neighborhood of N 
such that tOo]N =/(A)[N. The 2-form to o will be used in much the same way 
as the gradient of  the time function was used in Theorem 2.1. 

The behavior  of  Wo near N depends on the connection V. To express 
in terms of V l ,  note that i: TNa-+ T * N  can be written in terms of l and 

h as i (w)=  l ( w ) / ( A ) =  lhl(w). Since V / = 0 ,  it follows from the fact that 
E 2 =  1 that for Z E  F ( T N ' )  and any v e  TN, 

i - l v I l i ~ x -  g ~ X  = ( E (V~E ) ( X )  ) • (3.1) 

From a similar computation,  a metric connection (7 on M can be obtained 
with the property that (TA--0. The connection (7 is constructed as follows. 

Lemma  3.2. If  V = V + � 8 9  then V is a metric connection with 
torsion and VA = 0. 

Proof  Introduce the connection V ' = i - t V i  on M that extends the 
connection ~7 in T N  • Since i -- lhl is conformal, it follows that V' is a metric 
connection on M. Next observe that the dual connection V'* in T * M  is just 
V ' * =  iVi  -1, and consequently, for X, YES,(M),  

(V~vi)(Y) = g~v* i(Y) -- i(V} Y) = i(g~c Y) -- V x i ( r )  = --(Vxi)(Y) 

I f  S ( X ,  Y )  = V'x Y - V x Y  and if for a 1-form A, S t ( X ,  A)(Y) = A(S(X, Y)) ,  
then it follows from the above identity that 

2(Vxi)(Y) = S T ( X ,  i Y )  + iS(X,  Y )  

Consequently, if (7 = V + �89 then ( (Txi) (Y)  = 0. As in (3.1), S = E(VE), and 
so the lemma now follows. I 

Using the geometric structures introduced above, it is possible to derive 
a second-order system of  PDEs for the Lagrangian submanifolds of  a 
charge- ( -1)  2-vector field A satisfying (1.4). To introduce this system of  
equations, recall that if (e~, . . . .  en) is an orthonormal frame field on N, 
then the mean curvature vector H of N is given by H = ~  (V~ei) I .  Since 
N is a Lagrangian and E T N  = T N  ~, there is a second orthogonally invariant 
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vector field along N, namely H =Y~ (Ve,Ee~) II. Also introduce the following 
traces of the torsion tensor 7 ~ of V. For V~F(TN~), let tr T~-(V)-  
Z/I (A)(T(V,  Eri), ei), and for X e  Y'(N), let 

tr ~IL(X)=~ I(A)(T(X, ei), Eel) 
i 

Theorem 3.1. If N ~  M is a Lagrangian submanifold for a charge-(-1)  
2-vector field A satisfying (1.4), then 

tr ~H = 0 (3.2) 

and 

�89 + EH)  = 2/(tr T~) (3.3) 

Before proving this theorem, first consider what interpretation might be 
given the trace of the torsion tensor. 

Example 3.3. Let V be the Levi-Civita connection determined by the 
metric g on T*N given in Example 3.2, and let D be the Levi-Civita 
connection on N with curvature R. Suppose that X and Y are horizontal 
lifts of vector fields X and Y on N, and suppose that U and V are vertical 
lifts of the 1-forms l (U) and l(V), where U and V are vector fields on N. 
It is well known that for v ~ T'N,  

Vp~o = �89 v ) x  

V 2 V = i  I(DxlV)+�89 V)X 

V~ Y = ~)xY+ i-aiR(X, Y)v 

vog:0 
Now it is easy to see that for a lifted vertical field V, EV= l(iV). The 
definition of V implies T( W, Z)  = �89 wE)(Z) - E (VzE)( W)] for W, Z c 
~ ( T ' N ) ,  and so 7"(3~, Y)~ = �88 Y, X)v and T( U, ~r)~ = �88 U, V)v. 
Taking traces, one finds tr ~ll = 0 and tr T• 9)~ = ~Ric( V, v), where Ric is 
the Ricci curvature of D. 

Proof of Theorem 3.1. Equations (3.2) and (3.3) are derived by express- 
ing (1.4) relative to the local symplectic wo defined above. Let Ao = l-~(wo). 
By def ini t ion Ao] N : A I N ,  and if E = A - cAo, where c = Coo(A)/c%(Ao), then 
~o0(E ) = 0, cl x = 1, and E] N ~--- 0. If ~r = l(E), then substituting A -- cA 0 + Z 
and I ( A ) :  c~o o + a into (1.4) and using (1.2) gives 

t(Ao) do- - 2dc(Cg(Ao, O2o)) + r dc[N = 0 (3.4) 

Now since (g(A,/(A)) is constant, it follows that c2r + (r(s is constant, 
and so on N, 2wo(Ao) dc = - ( 4 n )  dc = -da)o(Ao). Clearly, i f X  e 3f(N),  then 
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d~oo(Ao)(X) = 0. To find the vertical derivative of oJo(Ao), let U, V c F(TN• 
Lemma 2.1, (3.1), the fact that too is the image of a lifted 2-form, and the 
fact that N is a Lagrangian imply that 

Vv~oo(U, X)IN =-O~o(h(X, V), U)IN (3.5) 

where h(X, V)= (VxV)" is the shape tensor of N. Let (el ..... e,,fl,...,f,) 
be an orthonormal Darboux frame for I(A) along N. Extend this frame to 
a neighborhood of N by lifting to TN j- via V and exponentiating. Denote 
the extended frame also by ( e l , . . . ,  e,,fl , . . .  ,f~). Now, A0[N = I-1(W0)[N = 
- -Ei f^  ei. It follows from (3.5) that if Ve F(TN• then 

Vl-'(OJo)(OJo)[N = 21-1(r = --4 E ~oo(h(e,, V),f) lu  
i 

and so 

dc(V)[N = - 1  E OJo(h(ei, V),f)JN 
r/ i 

The next step in evaluating (3.4) is to compute ~(Ao) dO'IN. First consider 
the orthogonal component ~ (Ao) &r• For any W ~ F(TM[N), 

~(Ao) d o - ( W ) l N  = - 2  Vf~o'(ei, W X ) + V  ~ x o ( f ,  e i ) + V e ~ o ' ( W  , f )  N 

(3.6) 

Since cr=l(A)-'C~Oo, clearly for VcF(TN• ~iVe,o-(V,f)[N=0, and a 
calculation shows that 

Vf, cwo(e~, V)[N =~_1  wo(h(ei, V),f)-wo(h(e,,f), V)[N 
i i FI 

E v vco~o(f, e,)]~, = o 
i 

These computations isolate all the terms in (3.4) that involve the shape 
tensor. Noting that (3.4) reduces to t ( A o ) d a -  2(n + 1)dC[N=O and 
substituting the above expressions, we find that (3.4) becomes 

{~ ~oo(h(ei, V),f)+wo(h(e~,f), V)} 

- { ~  Vvl(A)(f, e~)+Vfl(A)(ei, V)} N=0 

TO compute the terms involving V/(A), note that for any X, Y, Z ~ ~ ( M )  

Vxl(A)(Y,Z)-Vd(A)(X,Z)=2I(A)(7"(X, Y),Z) (3.7) 
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Substituting (3.7) into the above expression then leads to (3.3). To obtain 
(3.2), evaluate t(A0) &rlllN on a vector field X ~ ~ ( N ) .  It is clear from (3.6) 
that t (A0)da (X) lu=  ~iV~a(ei, X). However, for VeF(TN l)  and X, Ye 
f (N) ,  VvI(A)(X, Y)=0 .  To see this, first note that for p e N  the second 
fundamental form of S = expp TN 1 vanishes at p and so (VvEU) Ir = 0 for 
all V, UcF(TNI) .  Consequently for allV, U, WcF(TN• 

V v/(A)( U, W) = g((V rE)(U), W) = g((V vEU) II, W) = 0 

Since /(A)(U, V ) = - I ( A ) ( E U ,  EV) it now follows that Vvl(A)(X, Y)=0. 
As a result, 

~(Ao) do-(X)l~ = Y. V~wo(e,, X)  (3.8) 
i 

Since too is closed, (3.7) gives 

Vfco0(ei, X) = ~ Ve, w0(f,, X) + Vxogo(e,, f,.) = 2~oo(T(X, ei), f~) 1 
i i 

The proof  of Theorem 3.1 is also essentially the argument that demon- 
strates that along Lagrangian submanifolds (1.4) is infinitesimally equivalent 
to Maxwell's equations. This result is analogous to Theorem 2.1; however, 
unlike mechanics, where (1.4) reduces to the force-free Newton second law, 
the approximate Maxwell equations may possess a current. To obtain this 
result, let A be a charge-(-1) 2-vector field with a nondegenerate Lagrangian 
submanifold N. Suppose that A' is a second charge-(-1) 2-vector field with 
a Lagrangian submanifold N '  that solves (1.4) such that at p ~ M, Ap = A~ 
and TNp = TN'p. Let T and T' be the torsions determined by A and A', 
respectively. 

Theorem 3.2. If w; is the 2-form defined by A' in a neighborhood of 
N '  and i f / (A)  = c~o~)+ o- with c ( p ) =  1 and ~ ( p ) = 0 ,  then 

t(A) dl(A)+�89 d/(A)(A)Ip = - 2 I ~  ( t ( f )V~o ' ) •  2(tr T ~ - t r  T'~)[p] 

Proof Decompose A relative to A ; =  1 ~(~o;) by A =  cA;+E ,  so that 
c(p) -- 1 and E(p) = 0. Since A has charge-( - 1 ), d% = (1/4n) &o;(A;). Note 
that the terms of t(Ao) &r • that are determined by the shape tensor depend 
only on o); and p. Consequently, from (3.3), 

t(A) dl(A)• =5~ ( t ( f)V~p-)~+(tr  T •  T'• 
i 

However, from (3.8) the parallel component of ~(A) d/(A) depends only 
on O)'Op and so by (3.2) it must vanish at p. | 

Clearly, i f / (A)  is closed, then (1.4) is trivially satisfied and so (3.2) 
and (3.3) hold along all Lagrangian submanifolds of I(A). As a consequence 
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it is easy to see from Example 3.2 that for any Lagrangian submanifold of 
a charge-(-1)  2-vector field, there is a 2-vector field A' satisfying the 
hypotheses of Theorem 3.2. Therefore Theorem 3.2 has the following 
corollary. 

Corollary 3.1. If N ~  M is a Lagrangian submanifold of a charge-(-1)  
2-vector field A, then the 1-form ~(A) dl(A)[~ e ann(TN):  

If, however, I(A) is not closed, then the existence of Lagrangian 
submanifolds is not automatic. In fact, if d i m ( M ) >  8, then generically a 
nondegenerate 2-form w possesses no Lagrangian submanifolds. This fol- 
lows from the fact that if N ~  M is a Lagrangian submanifold for co, then 
TN must annihilate both o~ and dw. However, if d im(M) > 8 and if w and 
&o are both generic, there are no [�89 dim(M)]-dimensional  distributions that 
annihilate both ~o and dw. The following example shows that there do exist 
nontrivial solutions to (3.2) and (3.3) if dim(M)-< 8. 

Example 3.4. Examples of  Artinian manifolds with charge-(-1)  2- 
vector fields where l(A) is not closed can be constructed from almost- 
Hermitian geometries with a real orthogonal splitting. Let M be an almost- 
Hermitian manifold with almost complex structure J and Hermitian metric 
q, and suppose T M - - X O  Y, where X and Y are real orthogonal distribu- 
tions M with JX = Y. Define a new metric g on M by setting g = - q [ x O q l v  
and define an almost product  structure E on M by setting E[x = -J[x  and 
E]v = J] v. The automorphism E is now skew-symmetric relative to g and 
the Kfihler form is given by ~o(u, v) =g(Eu, v) for u, v6 TMp. If  lq and lg 
are the identifications determined by q and g, respectively, then l~l(w) has 
charge -1 ,  while l~ l (oJ )=- l~ l (w)  has charge +1. Now from Proposition 
4.2, (1.4) is equivalent to div,o lg~(w) = -div,o lql(og)---0. Almost-Hermitian 
manifolds that satisfy the latter equality are called semi-Kfihlerian and they 
are called balanced if the almost complex structure is integrable. Balanced 
manifolds enjoy many interesting properties (Michelsohn, 1983). A simple 
example of a balanced manifold that is not Kfihler is the three-dimensional 
solvable complex Lie group, 

t[ia ] 1 G = 1 (a, b, c) ~ C 3 

0 

The complex structure is induced by left translation of multiplication by i 
on the Lie algebra of G, 

g : 0 (a ,  b, C) C C 3 

0 
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The Hermitian metric and K/ihler form 60 are left translates of the standard 
Hermitian metric and K/ihler form on C 3. However, G is not a Kfihler 
manifold, since (~ is not closed. In fact, if (el, e2, e3) is the standard 
basis in C 3, then do3(ael, be2, ce3)= �89 Since A t l = / - l ( c o ) l r =  
-(elAiel+e2Aie2+e3Aie3), it follows that ~(A) & o = 0  and so A is a sol- 
ution to (1.4). Clearly, TG possesses a real Lagrangian splitting and so G has 
a compatibile Artinian structure. In fact, ~0 possesses a Lagrangian sub- 
manifold on which the Artinian metric is Lorentzian. Note that ~=  
{(ia, ib, c)l(a, b, c)~ N3} is a Lagrangian subalgebra of y, and so 

1 ia  c 

exp ~ = 1 i (a, b, c) ~ R 3 

0 

is a Lagrangian submanifold for to. Identifying e 3 with the time direction, 
one sees that in this case the approximating solution of Maxwell's equation 
is the electrostatic solution with the potential ~(a,  b ) =  -ab. 

4. CONSERVATION LAWS 

This section presents several consequences of (1.4) that correspond to 
the current and energy-momentum differential conservation laws in Maxwel- 
lian electrodynamics. These identities will further substantiate the relation 
between (1.4) and electrodynamics. To introduce these relations, recall the 
definition of the Schouten bracket on 2-vector fields (Nijhenhuis, 1955; 
Martin, 1988). The Schouten bracket is a differential pairing of 2-vector 
fields that extends the Lie derivative on vector fields. On simple 2-vector 
fields it is given by 

[UA V, X A  Y ] = X A ( L y U ^  V)+(LxUA V) A Y 

The utility of the Schouten bracket is that it greatly simplifies the Palais 
formula for the exterior derivative. If  ~o is a 3-form and if M and N are 
2-vector fields, then the Palais formula has the form 

dto(M, N) = t(M) dt(N)o2 + L(N) dt(M)o2 + o2([M, N])  (4.1) 

Using (4.1), we can derive differential conservation laws for 2-vector fields. 
To state these laws, let j be the 1-form determined by (1.4), that is, 

j = t(A) dl(A)-�89 (4.2) 

Also, define the energy-momentum tensor associated with A by 

~(A, I ( A ) ) = -  CO(A, I(A)) +�88 ~(A, l(A))id (4.3) 

The quantities j and ~ satisfy the following identities. 
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Theorem 4.1. Let A be a 2-vector, and let f be a smooth function on 
M;  then A and f satisfy 

,(A) dj = -�89 d/(A)([A, A]) (4.4) 

df(~(j)A) = ,(A) d(df~(A, I(A)))+�88 I(A)([A, A]) (4.5) 

Proof Equation (4.4) is a direct consequence of (4.1) and (4.2). To 
obtain (4.4), substitute w = df ^/(A) and M = N = A in (4.1). Next introduce 
a frame field ( e l , . . . ,  e2n) such that A=Y.7=I ei ^ ei+,. The first step is to 
rewrite the left-hand side of  (4.1). From the definitions given in Section 1, 

df^  dI(A)(A, A) = 4  Y~ df^/(A)(e~, ei+o, ej, ej+,) 
i , j= 1 

=8  Z df(e,) dl(A)(e~+,, ej, ej+,) 

-df(e~+.) dl(A)(e~, ej, e~+.) 
However, 

~(A)~(A) d l (A)=2  
i , j= 1 

dl( A )( ej, ej+., e , )e i+ , -  dl( A )( ej, ej+,, e,+,)e, 

and so dfA dl (A)(A,A)=-4df~(A)r(A)d/(A) .  Next observe that (1.2) 
implies that ,(A) df^ / (A)  = - 2  df(Cg(A,/(A))) +/(A)(A) df Substituting 
these two relations into (4.2) gives 

4 dfr(A)L(A) d/(A) = 2r(A) d(-2df(~(A, I(A))) + I(A)(A) dr) 

+ df^/(A)([A,  A]) (4.6) 

Now note that 

2d f0 (A)  d/(A)(A)) = 2A(d/(A)(A), dr) = t(A) d(/(A)(A) df) 

Subtracting this identity from (4.6) gives (4.5). | 

A direct calculation shows that in Example 3.1, (4.4) is just the current 
conservation law of classical electrodynamics. This follows since for an 
electromagnetic 2-vector field A on T'N,  [A, A] = 0. On the other hand, if 
A is a constant-charge 2-vector field, then both (4.2) and (4.4) can be written 
divergences relative to the volume element f l  =Ai%~ I(A)= I(A)". If  co is a 
nondegenerate 2-form and X is a k-vector field, then let div~o X be the 
( k  - 1)-form defined by the relation divo~ 51A w "-k+l = dr(X)w n. 

Proposition 4.1. If A is a constant-charge 2-vector field, then j  = diV~(A~ A 
and ~(A) dj = divt(A~ ~(j)A = 0. 

Proof The proof  is similar to the proof  of a corresponding set of 
identities in Hermit |an geometry. It relies on the relation that if ~(A, co) = 1, 
then for any k-form a, ( r (A)a)  A w "-k+l = k(n - k+ 1)a A w"-k; for details 
see Goldberg (1970), pp. 168-182. | 
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To interpret (4.5), first note that if [A, A] = 0, then (4.5) is formally 
identical to the conservation law of energy-momentum in electrodynamics. 
To appreciate this correspondence, consider this identity in the context of 
Example 3.1. 

Example 3.1 (continued). Using the notation previously introduced, a 
computation shows that for an electromagnetic 2-vector field A = Y ~ f  ^ 
ei + ~.i,j q~/jf Afj and a dual 2-form I(A) = -~. i f* ^ e* + ~-.i j eiq~ijejf) ~s ̂  f * ,  the 
energy-momentum tensor defined by (4.3) has the form 

) : 

+�88 

To compute the right-hand side of (4.5), choose df so that d f = f *  and set 
~i(A, I ( A ) ) = f * ( ~ ( A ,  I(A))). A calculation shows that 

j ,k  

which is the ith component of the divergence of the energy-momentum 
tensor associated with the field strength p. Next let df = e* and ~(A,  I(A)) = 
e*(~(A, I(A))). In this case, 

~(A) d~i(A , I(A)) = 4 Y~ V ek eiq~ikek 
k 

which is the ith component of the divergence of q~. If j =Y.ij~f*~ is the 
current defined by (4.2), then ~(j)A=Y4jie~--2(~kq~kG)f, and so (4.5) 
expresses both the field equations and the conservation law of  energy- 
momentum. In some sense ~ can be compared with the invariant 4- 
momentum in special relativity, since its divergence contains both the 
energy-momentum conservation law and the field equations. 

If A is a constant-charge 2-vector field, then clearly ~(A, I(A)) is a 
constant multiple of the identity and in this case (4.5) becomes 

L(j)A = �89 A] (4.7) 

This relation is just an alternative form of (4.2) and could also have been 
derived from the relation d/(A) = �89 A].  Recall that i = lhl and here i is 
applied to 3-vectors. Consequently, when (4.5) is evaluated on a constant- 
charge 2-vector field one obtains no new relations. This fact again indicates 
that the constant-charge 2-vector model extends classical electrodynamics 
in much the same manner in which relativistic mechanics extends Newtonian 
mechanics. 
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